Extended Generalized Hexagons and the Suzuki Chain

نویسنده

  • HANS CUYPERS
چکیده

Four extended generalized hexagons related to the simple groups G2(2)', PSU4(3), HJ and Suz are characterized by the condition that any triple of points {x, y, z) is a clique of the point graph not in a circle of the extended hexagon if and only if the distance of y and z in the residue at x is 3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Fixed Point Results for the Generalized $F$-suzuki Type Contractions in $b$-metric Spaces

Compared with the previous work, the aim of  this paper is to introduce the more general concept of the generalized $F$-Suzuki type contraction mappings in $b$-metric spaces, and to establish some fixed point theorems in the setting of $b$-metric spaces. Our main results unify, complement and generalize the previous works in the existing literature.

متن کامل

A New Common Fixed Point Theorem for Suzuki Type Contractions via Generalized $Psi$-simulation Functions

In this paper, a new stratification of mappings, which is  called $Psi$-simulation functions, is introduced  to enhance the study of the Suzuki type weak-contractions. Some well-known results in weak-contractions fixed point theory are generalized by our researches. The methods have been appeared in proving the main results are new and different from the usual methods. Some suitable examples ar...

متن کامل

Suzuki-type fixed point theorems for generalized contractive mappings‎ ‎that characterize metric completeness

‎Inspired by the work of Suzuki in‎ ‎[T. Suzuki‎, ‎A generalized Banach contraction principle that characterizes metric completeness‎, Proc‎. ‎Amer‎. ‎Math‎. ‎Soc. ‎136 (2008)‎, ‎1861--1869]‎, ‎we prove a fixed point theorem for contractive mappings‎ ‎that generalizes a theorem of Geraghty in [M.A‎. ‎Geraghty‎, ‎On contractive mappings‎, ‎Proc‎. ‎Amer‎. ‎Math‎. ‎Soc., ‎40 (1973)‎, ‎604--608]‎an...

متن کامل

Hosoya polynomials of random benzenoid chains

Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...

متن کامل

Numerical Reckoning Fixed Points in $CAT(0)$ Spaces

In this paper, first we use an example to show the efficiency of $M$ iteration process introduced by Ullah and Arshad [4] for approximating fixed points of Suzuki generalized nonexpansive mappings. Then by using $M$ iteration process, we prove some strong and $Delta -$convergence theorems for Suzuki generalized nonexpansive mappings in the setting of $CAT(0)$ Spaces. Our results are the extensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996